Modulation of Cortical Inhibitory Circuits after Cathodal Transcranial Direct Current Stimulation over the Primary Motor Cortex

نویسندگان

  • Ryoki Sasaki
  • Shota Miyaguchi
  • Shinichi Kotan
  • Sho Kojima
  • Hikari Kirimoto
  • Hideaki Onishi
چکیده

Here, we aimed to evaluate whether cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) and primary somatosensory cortex (S1) can modulate cortical inhibitory circuits. Sixteen healthy subjects participated in this study. Cathodal tDCS was positioned over the left M1 (M1 cathodal) or left S1 (S1 cathodal) with an intensity of 1 mA for 10 min. Sham tDCS was applied for 10 min over the left M1 (sham). Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) were recorded from the right abductor pollicis brevis (APB) muscle before the intervention (pre) and 10 and 30 min after the intervention (post 1 and post 2, respectively). Cortical inhibitory circuits were evaluated using short-interval intracortical inhibition (SICI) and short-latency afferent inhibition (SAI). M1 cathodal decreased single-pulse MEP amplitudes at post 1 and decreased SAI at post 1 and post 2; however, SICI did not exhibit any change. S1 cathodal and sham did not show any changes in MEP amplitudes at any of the three time points. These results demonstrated that cathodal tDCS over the M1 not only decreases the M1 excitability but also affects the cortical inhibitory circuits related to SAI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of left prefrontal transcranial direct current stimulation on the acquisition of contextual and cued fear memory

Objective(s): Behavioral and neuroimaging studies have shown that transcranial direct current stimulation, as a non-invasive neuromodulatory technique, beyond regional effects can modify functionally interconnected remote cortical and subcortical areas. In this study, we hypothesized that the induced changes in cortical excitability following the application of cathodal or anodal tDCS over the ...

متن کامل

Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation.

The cerebellum is a crucial structure involved in movement control and cognitive processing. Noninvasive stimulation of the cerebellum results in neurophysiological and behavioral changes, an effect that has been attributed to modulation of cerebello-brain connectivity. At rest, the cerebellum exerts an overall inhibitory tone over the primary motor cortex (M1), cerebello-brain inhibition (CBI)...

متن کامل

Excitability modulation of the motor system induced by transcranial direct current stimulation: A multimodal approach

Anodal and cathodal transcranial direct current stimulations (tDCS) are both established techniques to induce cortical excitability changes. Typically, in the human motor system, such cortical modulations are inferred through changes in the amplitude of the motor evoked potentials (MEPs). However, it is now possible to directly evaluate tDCS-induced changes at the cortical level by recording th...

متن کامل

Bidirectional variability in motor cortex excitability modulation following 1 mA transcranial direct current stimulation in healthy participants

Due to the high interindividual response variability following transcranial direct current stimulation (tDCS), it is apparent that further research of the long-lasting effects of the stimulation technique is required. We aimed to investigate interindividual variability following anodal tDCS and cathodal tDCS in a large-scale prospective cross-over study. Motor cortex physiology measurements wer...

متن کامل

Transcranial direct current stimulation effects on I-wave activity in humans.

Transcranial direct current stimulation (tDCS) of the human cerebral cortex modulates cortical excitability noninvasively in a polarity-specific manner: anodal tDCS leads to lasting facilitation and cathodal tDCS to inhibition of motor cortex excitability. To further elucidate the underlying physiological mechanisms, we recorded corticospinal volleys evoked by single-pulse transcranial magnetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016